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Abstract  

An adaptive controller for a class of high-order MIMO nonlinear time-delay systems in block-triangular form is proposed in the 

paper. The radial basis function neural network is chosen to approximate the unknown nonlinear functions in the system dynamics 

at first. Lyapunov–Krasovskii functionals are used to compensate the influence of delay terms. Then an adaptive neural network 

output tracking controller is designed by using the back-stepping recursive method. Based on Lyapunov stability theory, the 

proposed controller can guarantee all closed-loop signals are globally, uniformly and ultimately bounded, while the output 

tracking is able to converge to a neighborhood of the origin. Finally, a simulation example is given to illustrate the correctness of 

the theoretical results. 
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1 INTRODUCTION  

In practice, many control systems are multi-input multi-output (MIMO) multivariable systems. As we all known that 

it is difficult to analyze and control these nonlinear uncertain systems in view of the complex coupling between input 

and output variables and the time-delay. In [1], the integral Lyapunov functions were used to obtain adaptive fuzzy 

controller for the first uncertain MIMO nonlinear systems with the block-triangular functions. In [2], a fuzzy 

adaptive control scheme based on observer was proposed for a class of MIMO nonlinear systems with immeasurable 

states, and the output feedback control laws and parameter adaptive laws were derived. In [3], hyperbolic tangent 

functions were used to solve the singularity problem of Lyapunov synthesis in MIMO nonlinear time delay systems. 

However, most of the exiting work mainly focuses on the first-order MIMO nonlinear systems. Little attention has 

been paid to the high-order nonlinear system with time-delay. It is difficult to get the analytical solutions of high-

order nonlinear system because of the large inertia. The traditional approaches to study the high-order systems 

mainly include the fast order reduction of model [5], the approximation of first or second order inertia and pure delay 

link, sliding mode control [6], fuzzy adaptive control as well as robust adaptive control [7]. In [8], for a class of high-

order nonlinear dynamic systems, a composite control strategy was proposed based on adaptive terminal sliding 

mode control and disturbance observer theory, which achieves sliding mode controller’s switching gain. In [9], for 

the tracking control for a class of high order nonlinear systems with input delay, the fuzzy logic approach was used 

to estimate the unknown continuous functions, and a state conversion method was presented to eliminate the delayed 

input items. Finally, the proposed closed 1oop system was concluded to be semi-globally uniformly ultimately 

bounded and stable.  

In this paper, based on the back-stepping and neural network approximation, we further take into account the 

tracking control problem for a class of MIMO high-order nonlinear time delay systems with unknown nonlinear 

functions in block-triangular form. To design an adaptive controller for theses MIMO high-order nonlinear systems, 

we apply the RBF (Radial Basis Function) neural network to approximate the unknown nonlinear functions, which 
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reduces the difficulty of the controller design. Moreover, we adjust the norm of the neural network weight vector 

instead of the weight vector. As a result, the adjusting parameters are greatly reduced, and the simulating verification 

is simplified. 

2 PROBLEM FORMULATION AND PRELIMINARIES 

Consider the n-input n-output continuous-time MIMO nonlinear system in block-triangular form with unknown time 

delays described by (1). 

1p
p qT

p
x y x y

p q




                                                            (1) 

For 0  , 1p  , 1q   are the delay state variables of the j subsystem. ( 1)( 1) 1p q    with 

, ,1 ,2 ,[ , , , ] j

j j

iT

j i j j j ix x x x R   is the vector of delay-free states for the first ji  differential equations of the j 

subsystem; 1 2[ , , , ]T

j ju u u u   is the inputs for the first j subsystems; 
1 2[ , , , ]T n

ny y y y R   is the outputs; 

, jj i and , jj m are time delays ; , 0
jj i  , , 0

jj m  ; , ( )
jj if  , , ( )

jj ig  and jy  are unknown smooth functions.  

The control objective: (1).Design an adaptive NN feedback controller to ensure closed-loop systems globally 

bounded; (2).The output jy  follows the specified desired trajectory djy . 

Assumption 1: For 1,2, ,j n , 1,2, , 1j ji m  .The functions , ( )
jj ic  and , ( )

jj ic  satisfy 

, , ,0 ( ) ( ) ( )
j j jj i j i j ic g c       ,  , 1jj m jx u  . 

Assumption 2: Let ,1 ,2 ,, , ,
jj j j mp p p  be odd positive integers. 

Assumption 3: The desired trajectories djy , 1,2, ,j n , and their time derivatives up to the nth order, are 

continuous and bounded.Young inequality: for any two vectors x and y ,the following inequality holds: 

1p
p qT

p
x y x y

p q




   where 0  , 1p   and 1q  are constants, such that ( 1)( 1) 1p q   .Gromwell 

inequality:
,1 ,1

2

,1

,1

,12j j

j

j z U

j

V V V
w


   , if the continuous function ( )u t satisfies.

0

( ) ( )
t

t
u t M k u s ds   in 0 1[ , ]t t , 

then ,1 ,1 ,10 , 0, 0j j jw l   . 

Lemma 1: For any real numbers a , b and 1p  , the following inequality holds:
2

, ,j jj i j iW   

3 ADAPTIVE NN CONTROLLER DESIGN 

In order to reduce the adjusting number of neural network adaptive parameters in the simulation, we define a new 

unknown constant 
2

, ,j jj i j iW  .In this paper, we estimate the , jj i instead of the ideal weights of network , jj iW with 

Lyapunov method. Thus, we can only adjust one parameter in each system. Define ,
ˆ

jj i is the estimate of , jj i , so the 

estimate error , , ,
ˆ

j j ji i i i i i    : 

Step 1: ( ,1)j Let ,1 ,1j j djz x y  for 1,2, ,j n , consider the Lyapunov function as follows:
,1

2

,1

2j

j

z

z
V   

Then, the time derivative of 
,1jzV is given by (2) 

,1

,1 ,1 ,1 ,1 ,2 ,1( )j

j

p

z j j j j j djV z f g x h y                                                   (2) 

With Young inequality, We have
2 2

,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1

1 1
( ( )) ( ( ))

2 2
j j j j j j j jz h x t z h x t      Substituting this inequality into (2) 

yields ,1

,1

2

,1 ,1 ,1 ,2 ,1 ,1 ,1 ,1

1 1
( ) ( ( ))

2 2

j

j

p

Z j j j j j dj j j jV z f g x z y h x t       . To deal with the delay term, consider the 
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Lyapunov-Krasovskii functional as follows:
,1

,1

2

,1 ,1

1
( ( ))

2j
j

t

U j j
t

V U x s ds


   Differentiating 
,1jUV with respect to time, 

we obtain (3). 

,1 ,1 ,1 ,1 ,1 ,1

1 1
( ( )) ( ( )).

2 2jU j j j j jV U x t U x t                                                       (3) 

If we choose 
2

,1 ,1 ,1 ,1 ,1 ,1( ( )) ( ( )),j j j j j jU x t h x t     Then 
2

,1 ,1 ,1 ,1( ( )) ( ( )).j j j jU x t h x t  Suppose 

2 2 2

,1 ,1 ,1 ,1 ,1( ( )) ( ( )),j j j j jh x t z x t   where 
2

,1 ,1( ( ))j jx t  is a known function.  Putting (2) and (3) together, we have (4). 

,1

,1 ,1 ,1 ,1 .1 ,1 ,2[ ( ) ],j

j j

p

z U j j j j jV V z F Z g x                                                       (4) 

where 
2

,1 ,1 ,1 ,1 ,1 ,1 ,1

1 1
( ) + ( ( )),

2 2
j j j j dj j j jF Z f z y z x t     ,1 ,1[ , , ] .T

j j dj djZ x y dy  Since the neural networks (NN) have 

good ability of approximation, we use NN to approximate ,1jF such that for given
*

,1 0j   , 

,1 ,1 ,1 ,1 ,1( ) ( ),T

j j j j jF W S Z Z                                                              (5) 

where 
*

,1 ,1| |j j  is an unknown constant. By Young’s inequality and the definition of , jj i , we have (6) (7). 

2

,1 ,12

,1 ,1 ,1 ,1 ,1 ,1 ,12

,1

( ) ( ) ( ) ,
2 2

j jT T

j j j j j j j

j

v
z W S Z S Z S Z z

v


                                            (6) 

2 *2

,1 ,1 ,1 ,1 ,1

1 1
( ) .

2 2
j j j j jz Z z                                                               (7) 

By utilizing (5)-(7), (4) can be rewritten in the following form. 

,1

,1 ,1

2

,1 ,12 2 *2

,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,22

,1

1 1
( ) ( ) .

2 2 2 2

j

j j

pj jT

z U j j j j j j j j j

j

V V S Z S Z z z z g x
 




                         (8) 

We further consider the Lyapunov function as follows: 
,1 ,1

2

,1

,1

,12j j

j

j z U

j

V V V
w


   . Design NN adaptive law as follows: 

,1 2

,1 ,1 ,1 ,1 ,1 ,12

,1

ˆ ˆ( ) ( ) ,
2

j T

j j j j j j

j

w
S Z S Z z l 


                                                (9) 

where ,1 ,1 ,10 , 0, 0j j jw l    are constants to be selected.  From (8) and (9), we have 

,1

2

,1 ,12 2 *2

,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,2 ,1 ,1 ,12

,1 ,1

ˆ 1 1 1 ˆ( ) ( )
2 2 2 2

jpj jT

j j j j j j j j j j j j

j j

V S Z S Z z z z g x l
w

 
  


       

As we know 

,1 ,1 ,12 2

,1 ,1 ,1 ,1

,1 ,1 ,1

ˆ .
2 2

j j j

j j j j

j j j

l l l

w w w
                                                    (10) 

Design virtual smooth controller: 

,1

,1

1,1 ,12

,1

,2 ,1

,1 ,1

ˆ1
( ) ( )

2 2
( ) .

( )

j

j T

j j

pj

j j

j j

n S Z S Z

z
c x






 

                                            (11)  

By assumption 1 and ,1 ,11

,1 ,2 0j j jp p p

j jz 
 

  , we arrive at 

,1 ,1 ,1 ,11 1

,1 ,1 ,2 ,1 ,1 ,2
j j j j j jp p p p p p

j j j j j jc z g z x
   

                                                   (12) 

From (10)-(12), we have 
,1 ,1

2

,1 ,1 ,12 2 *2 2

,1 ,1 ,1 ,1 ,1 ,2 ,2 ,1 ,1

,1 ,1

1

2 2 2 2

j jp pj j j

j j j j j j j j j

j j

l l
V nz c z x

w w


           . 

Step 2 : ( , jj i ( 1,2, ,j n , 2, , 1j ji m  )).Let , , ,j j jj i j i j iz x   , construct the Lyapunov function as 
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,

2

,
.

2

j

j i j

j i

z

z
V   A direct calculation gives 

,

, , , , , 1 , ,( ).
j i j

j i j j j j j jj

p

z j i j i j i j i j i j iV z f g x h      Similar to step 1, we have 

2 2

, , , , , , , ,

1 1
( ( )) + ( ( )).

2 2j j j j j j j jj i j i j i j i j i j i j i j iz h x t z h x t     Note that , jj i  can be expressed as  

,

,

, , , ,( 1)

, , , , 1 , ,( )
1 1 0 1, , ,

ˆ( ) ( ) .
ˆ

j j j j

j j jj k

j j k

i i i i
j i j i j ip j kk

j i j k j k j k j k dj j kk
k k k kj k j k dj j k

f g x h x y
x x y



   
 







   

   
    

   
     

We have: 

 

, ,

,

, ,

, , ( 1)

, , , , 1 , , , , 1 (
1 0,

,, 2 2 2

, , , ,

1 1 1,,

1
[ ( )

2

1 1 1ˆ ( ) ] ( ) ( )
ˆ 2 2 2

j j

j i j jj j k

j i j j j j jj

j j

j

j j j i j kj

i i
p j i j ip k

z j i j i j i j i j i j k j k j k djk
k kj k dj

i i
j ij k

j k j i j i j k

k k kj kj k

V z f g x z f g x y
x y

z h x h x
x

 

 








 

 

  

 
     

 


   



 

 

）

.
ji



                (13) 

To deal with the delay term, consider the Lyapunov-Krasovskii functional as follows: 

 
,

, ,

1

, ,

1

1 1
( ( )) ( ( )) .

2 2

j

j i jj j i j kj

i
t t

U j i j k
t t

k

V x s ds x s ds
 

 


 


      Differentiating ,j i j
UV yields 

,

1 1

, , , , , ,

1 1

1 1 1 1
( ( )) ( ( )) ( ( )) ( ( )).

2 2 2 2

j j

j i j j jj

i i

U j i j i j i j k j k j k

k k

V x t x t x t x t     
 

 

                          (14) 

If we choose 2 2

, , , , , , , ,

1 1

( ( )) ( ( )) ( ( )) ( ( )),
j j

j j j j

i i

j i j i j k j k j i j i j k j k

k k

x t x t h x t h x t     
 

         

then 2 2

, , , ,

1 1

( ( )) ( ( )) ( ( )) ( ( )).
j j

j j

i i

j i j k j i j k

k k

x t x t h x t h x t 
 

     Suppose:  

2 2 2 2 2

, , , , ,

1 1

( ( )) ( ( )) ( ( ( )) ( ( ))),
j j

j j j

i i

j i j k j i j i j k

k k

h x t h x t z x t x t 
 

                                    (15) 

where 
, ( ( ))

jj i x t , 
, ( ( ))j k x t  are known functions. From (13)-(15), we can get  

,

, , , , , , , 1( ( ) ),
j i j

j i j i j j j j jj j

p

z U j i j i j i j i j iV V z F Z g x     

where: 

, ,

,

1
1 , , ,( 1)

, , , , , , 1 ,( )
0 1 1. ,

1 , 2 2 2

, , , ,

1 1,

1 ˆ( )
ˆ2

1 1
( ) ( ( ( )) ( ( ))

2 2

j j j

j j i j j jj j k

j j j

j j

j j i jj

j j j

i i i
p p j i j i j ipk

j i j i j i dj j k j k j k j kk
k k kdj j k j k

i i
p p j i

j i j i j i j k

k kj k

F f z y f g x
y x

z z x t x t
x

  





 


  



  

 

 

  
     

  


  



  

  ).

 

Similar to step 1, we can get 
, , , , ,( ) ( ),

j j j j j

T

j i j i j i j i j iF W S Z Z    

,

, ,

, 2 2 *2 2

, , , , , , , , , 12

,

1 1 1
( ) ( ) ,

2 2 2 2

j ij j

j i j i j j j j j j j j jj j

j

pj i T

z U j i j i j i j i j i j i j i j i j i

j i

V V S Z S Z z z z g x


 


       

where , , ,1 , 1
ˆ[ , , , , , , ].j

j j j

iT

j i j i dj dj j j iZ x y y     Consider the Lyapunov function as follows: 

, ,

2

,

, , 1

,2

j

j j j i j ij j

j

j i

j i j i z U

j i

V V V V
w


     

Since                                    

2
, 1 , 1

1

,2 2 2

, 1 ,1 , 1 ,

1 ,

21

, ,*2

, , , 1 , 1 , ,

1 ,

( 2)( )
2

1
( )

2 2 2

j

j j

j

j i j ij j

j j j j

i

j k

j i j j j i j k

k j k

i
p pj k j k

j k j k j i j i j i j i

k j k

l
V n i z z

w

l
c z x

w




  

 



 





 



      

    




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Young inequality and Lemma 1 imply the existence of a smooth function , ( ) 0
jj i   , such that. 

, ,1 1

1

2 2

, 1 , 1 , , , , ,

1

( )
j

j i j ij j

j j j j j j

i
p p

j i j i j i j i j l j i j i

l

c z x z z  



 



     Then a virtual smooth controller of the form 

,

,

1, , ,2

,

, 1 ,

,

ˆ
1

1 ( ) ( )
2 2

( )

j

j j j

j ij j

j j

j

j i T

j j i j i j i

pj i

j i j i

j i

n i S Z S Z

z
c





 

    

 
   is such that: 

, ,

2

, , ,2 2 *2 2

, , , , , , , , 1 , 1

1 1 1, ,

1
( 1) ( )

2 2 2 2

j j j

j i j ij j

j j j j j

i i i
p pj k j k j k

j i j j k j k j k j k j i j i j i j i

k k kj k j k

l l
V n i z c z x

w w


    

  

             

Step , ( 1, , )jj m j n : let , , ,j j jj m j m j mz x   , construct the Lyapunov function 
,

2

,

2

j

j m j

j m

z

z
V  A straightforward 

calculation gives 
,

, , , , , ,( )
j mj

j m j j j j jj

p

z j m j m j m j j m j mV z f g u h     .To deal with the delay term, consider the Lyapunov-

Krasovskii functional as follows: 
,

, ,

1

1

1 1
( ( )) ( ( ))

2 2

j

j m j j m j kj

m
t t

U
t t

k

V x s ds x s ds
 

 


 


   Design NN adaptive law as 

follows: 
, 2

, , , , , ,2

,

ˆ ˆ( ) ( )
2

j

j j j j j j

j

j m T

j m j m j m j m j m j m

j m

w
S Z S Z z l 


  Similar to step 2, choose Lyapunov function as follows  

( 1) , ,

2

,

, 1, , 1

,2

j

j j j j m j mj j

j

j m

j m j m j m z U

j m

V V V V V
w



                                              (16) 

Then, the time derivative of , jj mV is given by 

, ,

2
, ,2 2 *2

, , , ,

1 1 1 1 1,

, 2

, , , , 1 , 1

,

1
( 1) (

2 2 2

)
2
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After step , nn m : the last step for the nth subsystem, it can be shown that the derivative of , nn m  along the closed-

loop trajectories satisfies the following inequality:  

, ,

2

, , ,2 2 *2 2

, , , , ,

1 1 1 1, ,

, , , 1 , 1

1
( ) ( )

2 2 2 2

j j

n

n m n mn n

n n n n

m mn n
j k j k j k

n m j k j k j k j k

j k j kj k j k

p p

n m n m n m n m

l l
V z

w w

c z x


  



   

 

     

 

 
                        (17) 

From assumption 1, we know , 1nn m nx u  . Combined with the formula (12), we can obtain adaptive designed 

controller and adaptation law are as follows 
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such that  
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   is a constant. Theorem 1 Closed-loop systems (1) that satisfy the 
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assumptions 1-4, there exists a state feedback controller u such as (18) and NN adaptation law ̂ such as (19), such 

that all the closed-loop trajectories remain bounded and the output tracking error converges to a neighbourhood of 

the origin. Proof. From (19), we have  . , ,
n nn m n mV cV     where ,min{2, }j kc l , 

2

, ,

2 1
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1 1 1,
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By Gromwell inequality, we can obtain: 

, , ,exp [ ( (0)) ] ( (0)) .
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ct

n m n m n mV V z V z
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                                                  (21) 

Since , ( (0))
nn mV z is bounded, then , jj iz , , jj ix and ,

ˆ
jj i are bounded. From (16) and (21), we have 

2

,

, , ( (0))
2

n

n n

n m

n m n m

z
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nj j dj n mz x y V z

c


     So, the output tracking error converges 

to a neighborhood of the origin. The proof is finished. 

4 SIMULATIONS 

In this section, a simulation study is presented to verify the effectiveness of the adaptive NN controller for the 

general case. In this case, the bounds on the functions of delayed states are not known. Consider the following two-

input, two-output system in block-triangular form 

2 3

11 11 11 12 11 11

2 2 5

12 11 12 12 22 11 12 1 12 12

3

21 21 22 21 21

5

22 12 21 22 11 1 21 22 11 2 22 22

1 11

2 21

(1 sin ( )) ( )

(1 sin ( ) cos ( )) ( )

( )

( ) (2 sin( ) ( )

x x x x x t

x x x x x x x u x t

x x x x t

x x x x x u x x x u x t

y x

y x









     


       


    


       




 

 

The desired trajectories 1 cos( )dy t , 2 sin( )dy t . The simulation results shown in from Fig.1 to Fig.6 are based on 

the following parameters. 

11 12 21 22 8w w w w    ; 11 12 21 22 0.0001l l l l    ; 11 12 8   ; 21 22 5   ; 11

1

42
c  ; 12

1

5
c  ; 21

1

8
c  ; 

22

1

7
c  ;

11 12 21 22[ , , , ] [0,0,0,0]T T     , 12 0.5  , 21 1.5  , 22 0.5  . 

The initial conditions: 
11 12 21 22[ , , , ] [0,0,0,0]T T     ,

11 12 21 22[ (0), (0), (0), (0)] [0,0,0,0]T Tx x x x  . The NN simulation 

results clearly show that the proposed controller can guarantee the bounded of all the signals in the closed-loop 

system From Fig.1 and Fig.2, we can get that the output signal 1y and 1( )y t  can effectively follow the reference 

1( )dy t  and 2 ( )y t  respectively. At the same time, Fig.3 and Fig.4 clearly show the sate signal 2 ( )dy t  and 21x  are 

globally bounded. From Fig.5 and Fig.6, we can get the tracking error converges to a relatively small neighborhood. 

    
FIG.1. OUTPUT ("- -") AND REFERENCE SIGNAL ("–")                          FIG.2 OUTPUT("- -") AND REFERENCE SIGNAL("-") 
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FIG.3 STATE SIGNAL

12x                                                                         FIG.4.STATE SIGNAL
22x  

 
FIG.5. TRACKING ERROR 

1 1( ) ( )dy t y t  

5 CONCLUSIONS 

In this paper, we design the NN controller and adaptive laws for a class of MIMO high-order nonlinear time delay 

systems, by using back-stepping and the neural network approximation theory. Based on Lyapunov function, the 

designed adaptive controller can ensure that all the signals of the closed-loop system remain bounded. Moreover, the 

tracking errors are able to converge to a neighborhood of the origin. Simulation results further show the proposed 

adaptive controller scheme is feasible. 

The MIMO high-order nonlinear systems with variable time delay are more common in the control fields and they 

are much more complex. Yet we only discuss the situation with constant time delay in the paper. For the future work, 

we plan to study these systems with variable time delay. 
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