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Abstract  

This paper deals with dichotomy and absolute stability problem for a class of complex network systems with each node be a 

general Lur’e system which has sector constraint functions. The interconnections of complex network systems referred in this 

paper conclude not only the linear interconnection of states, but also the interconnection of the sector nonlinearities. Besides, 

bilinear matrix inequality (BMI) conditions of dichotomy and absolute stability of complex network systems are derived. 

Moreover, controller design methods of dichotomy and absolute stability of complex system are given in this paper and the 

related controller can be constructed via feasible solutions of a certain set of bilinear matrix inequalities (BMIs). Finally, 

examples are given to illustrate the effectiveness of the proposed methods. 

Keywords: Complex Network System; Lur’e System; Property of Dichotomy; Absolute Stability; BMI (Bilinear Matrix 

Inequality) 

1 INTRODUCTION  

Complex dynamic networks have been extensively studied in the recent years by physicists, biologists, social 

scientists and control scientists [1]. For dynamic network systems, stability criterion of large-scale system is given 

by Moylan and Hill [2], and the formation problem of airplane using a distributed control method is derived by 

Wolfe [3]. With the concept of the S-hull, a multi-variable stability criterion similar is given by Lestas and 

Vinnicombe [4]. The control problems for a spatially invariant system are studied in [5].  The systems considered 

above are linear systems, while the nonlinearity can’t be avoided in practical systems. 

Lur’e system is one of the classic nonlinear systems, which can be regarded as a feedback connection of linear 

system and nonlinear element satisfying some sector conditions [6], which can portray a lot of nonlinear dynamical 

systems in practical engineering. Nowadays, the study of global properties and robust stability of nonlinear network 

systems have attracted a lot of attentions of researchers[7-10]. In [7], the stability of distributed heterogeneous 

systems with static nonlinear interconnections is considered. Considering the interconnection matrix of the network 

systems, the synchronization conditions
 
[8] and stability conditions [9]

 
are given. The consensus region of multi-

agent systems with nonlinear dynamics is investigated in [10]. Reference [11] presents the formation controller for 

the second-order multiagent systems with time-varying delay and nonlinear dynamics. But the interconnection 

considered above is only one kind of interconnections. 

In this paper, we consider the dichotomy and absolute stability of a class of nonlinear complex dynamical networks 

with two kinds of interconnections. The complex network system is composed of subsystems, which are a kind of 

nonlinear system, i.e., Lur’e systems. Besides, the interconnections of the complex network systems referred in this 

paper conclude not only the linear interconnection of states, but also the interconnection of the sector nonlinearities. 

2 DESCRIPTION OF THE PROBLEM 

Suppose that every node in a complex network is a Lur’e systems described by 
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where 1 1 1 1, , , ( ,..., ) , ( ,..., ) , ( ) ( ( ),..., ( ))n n n m m n T T T
i i in i i im i i i i im imA R B R C R x x x y y y f y f y f y        , and the 

nonlinear function if  satisfying    2 2( ) ,i i i i if          . 

The corresponding transfer function is defined as 1( ) ( )K s C sI A B  . 

Consider a class of dynamic complex network with each node being a general Lur’e system 
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                             (2) 

Where , , , ,n m
i ix R y R A B C  have the same meaning as those in (1). 12

n nA R  , 12
n nB R  are the inner 

coupling matrix describing the interconnection among components of ( )j ix x  and ( )j iu u , , 1,...,i j N  

respectively. And ( )ij N NL a  denotes the connection topology and coupling strength ,ija i j  are given as in (2) 

and 1,
N

ii ijj j ia a   which are referred to the outer coupling matrix. By the Kronecker product, network (2) can be 

rewritten as 

12 12( ) ( )

( )

( )

N N

N

x I A L A x I B L B u

y I C x

u f y

       

 

 

                                            (3) 

Lemma 1[6] Suppose that A  has no eigenvalues on the imaginary axis and ( , )A B  is controllable and ( , )A C  is 

observable. And suppose that nonlinear function if ( 1, , )i m is piecewise continuously differentiable and 

'( )if  is bounded. If system (1) has isolated equilibriums and there exist diagonal matrices P and Q with Q>0, a 

scalar 0    and a symmetric matrix W such that the following LMI is feasible 

11 12

22

0
*

  
 

 
                                                                          (4) 

Where 1 1( , , ), ( , , )m mdiag diag       , 11
T T T TWA A W C QC A C CA      , 

22
T T T TPCB B C P Q B C CB     ,  

12
1

( )
2

T T T T TWB A C P A C CB C Q        , then system (1) is dichotomous for all  ,f    .  

Lemma 2[12] 1 1 2 3, ,TT T T T  are compatible dimension matrix. The following conditions are equivalent  

(1) 2
1 2 3( ) 0, : TT He T T I       ; (2) there exists 0  satisfying 2

1 2 2 3 3
1

0T TT T T T T


   ; 

(3) there exists 0  satisfying
2

1 2 2 3

3

0
T TT T T T

T I





 
 

  

;(4) there exists 0  satisfying 
2

1 3 3 2 0
TT T T T

I





 
 

   

. 

Lemma 3[9]Suppose i are distinct eignvalues of L, then 12NI A L A   is stable if and only if 12iA A  (i=1,...,N) 

are stable simultaneously. 

Proof Let T be a non-singular matrix such that 1T LT J  , where J is the diagonal form of L. Then the similarity 

transformation, i.e., 1
12 12( )( )( )N NT I I A L A T I I A J A          completes the proof . 

Lemma 4[6] System (1) is absolutely stable for all  f    , if A B C   is stable and there exist diagonal 

matrices P and Q with 0Q  , and a symmetric matrix W such that the following LMI is feasible 
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                                                            (5) 

Where 11 12
1

, ( )
2

T T T T TWA A W C QC WB A C P C Q            . 

3 MAIN RESULTS 

Firstly, BMI criterion about dichotomy of nonlinear network system is given.  Then the problem of the absolute 

stability of nonlinear network systems is considered, and the method of designing the related controllers is obtained. 

Theorem 1 Suppose L is a matrix with eigenvalues , 1,... ,i i N  different from each other. If 12i iA A A   , 

1,...i N have no eigenvalues on the imaginary axis. ( , )
i I

A B  is controllable, and ( , ) 
i

A C  ( , ) 
i

A C is observable. 

If system (3) has isolated equilibrium and there exist diagonal matrices P and Q with Q>0, a scalar 0    and a 

symmetric matrix W such that the following LMI is feasible 

11 12

22

0
*

  
 

 
                                                                        (6) 

where 

11 12
1

, (
2i i i i I i i I

T T T T T T T T TWA A W C QC A C JA WB A C P A C CB J Q                      ,

22
I I I I

T T T TPCB B C P Q B C CB         then systems (3) is dichotomous for all f satisfying the sector 

condition. 

Proof: By lemma 1, if system (3) has isolated equilibrium and there exist diagonal matrices P and Q with Q>0, a 

scalar 0  and a symmetric matrix ,N NW I W Q I Q     such that the following LMI is feasible 

11 12

22

0
*

  
 

 
                                                                     (7)  

where 11 12 12 12 12( ) ( ) ( ) ( ) ( )T T T T

N N N N NW I A L A I A L A W I C Q C I A L A C C I A L A                    
 

12 12 12 12( ) ( ) ( )T T T T
N N NI A L A C P I A L A C C I B L B             

12
1

( ) ( ) ( )
2

T
N NI C Q W I B L B           

22 12 12 12 12( ) ( ) ( ) ( )T T T T
N N N NPC I B L B I B L B C P Q I B L B C C I B L B                  

Suppose U is an orthogonal matrix such that TU LU   , where 1( ,..., )Ndiag    , and i are eigenvalues of L. 

Let { , }n nX diag U I U I   , and multiplying (7) on the left and on the right by TX and X respectively. Than we 

can have (6), and this completes the proof.  

In this section, network (3) with state feedback controller and uncertainties can be given as follows  

12 12 1( ( ) ) ( ( ) )

( )

( )

N N k

N

x I A A L A x I B B L B u B u

z I C x

u f y

            

 

 

                          (8) 

where the uncertainties satisfy    1 2A B HF E E   , and  1 2, ,n i j n j mH R E R E R     , 2TF F I .The 

feedback controller chosen here is  ( )ki iu Kx t . 

Theorem 2 Suppose that L is a matrix with , 1,... ,i i N  are eigenvalues of L, different each other. If 

12i iA A A   , 1,...i N  have no eigenvalues on the imaginary axis, ( , )
i I

A B  is controllable, and ( , ) 
i

A C  

( , ) 
i

A C is observable. And f satisfy the sector condition in (2). If system (8) has isolated equilibrium and there exist 

diagonal matrices P, Q>0, 10, 0,   2 0  ,a invertible matrix X=XT and matrix Y , such that the following LMI is 

feasible 
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I

I



 

 









     
 
 
 

 
 

 
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 
 

   

                                  (9) 

where 11 1 1 12 1
1

, ( )
2i i i i

T T T T T T T T TA X XA B Y Y B B XA C P Y B C P XC Q                , 

13 1
i

T T T T TXA C Y B C    , 16
1

2

TXC Q   , 

17 2 22,
i i

T T TXC PCB B C P Q        . Then system (8) is dichotomy. And 1K YX  is the state feedback 

parameter matrix. 

Proof: according to the theorem 1, system (8) is dichotomy, if the inequality (9) satisfy, then inequality (9) can be 

rewritten as 

 1 2M 0 0

WH

He PCH F E E

CH

  
  

   
    

                                                        (10) 

where

11 12 12

22

( )

M *

* *

T T
i

T T

A A C

B C

I

 





   
 
  
 

 
 

  , 11 12 12( ) ( )T T
i iW A A A A W C QC        ,  

12 12 12
1

( ) ( ) ( )
2

T T T
i iW B B A A C P C Q          , 22 12 12( ) ( )T T

i iPC B B B B C P Q       . 

According to the lemma 2 and Schur complement lemma, the inequality (10) is satisfied, for 1 0  , 2 0   if and 

only if the following inequality is satisfied 

11 12 13 1 1 16 17

22 1 2

1

1

2

2

* 0 0

* * 0 0 0

0* * * 0 0 0

* * * * 0 0

* * * * * 0

* * * * *

T

T T T

WH E

B C PCH E

I CH

I

I

I

I



 

 









     
 
 
 

 
 

 
 

 
 

   

                                   (11)  

where 11 12 12 1 1 12 12 12( ) ( ) , ( ) ( )T T T T T
i i i iW A A A A W WB K K B W W B B A A C P                

1
1

( ),
2

T T T TK B C P C Q     13 12 1( )T T T T T
iA A C K B C      ,  

16 17 2
1

,
2

T TC Q C      , 22 12 12( ) ( )T T
i iPC B B B B C P Q       . 

Let 1{ , , , }diag W I I  , and multiply inequality (11) on left and on right by Z. let 1X W  , 1Y KW  . Then the 

proof is completed.  

Remark1: Inequality (9) is a nonlinear matrix inequality which involves 1 2, , , , , ,Y P X Q    . If ,P Q , 1 2, ,   are 

fixed, then inequality (9) is a linear matrix inequality. And if ,X Y are fixed, inequality (9) is a linear matrix 

inequality which involves ,P Q , 1 2, ,   . Then we use the alternating algorithm until the inequality feasible solution 

can be obtained.  
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Theorem 3 Suppose L is a matrix with , 1, ,i i N  , which are eigenvalues of L, and are different from each other. 

Network (3) is absolutely stable for all f satisfying the sector condition in (2), if 12 , 1, ,iA A i N  are stable and 

there exist diagonal matrices P and Q with 0Q  , and symmetric matrices W , such that the following LMI is 

feasible 

11 12

22

0
  

 
  

                                                                      (12) 

where  11 12 12 12 12 12
1

( ) ( ) , ( ) ( ) ,
2

T T T T T
i i i iW A A A A W C QC W B B A A C P C Q                    

22 12 12( ) ( )T T
i iPC B B B B C P Q       . 

Proof: By lemma 4, network (3) is absolutely stable, if 12NI A L A    is stable and there exist diagonal matrices 

P and NQ I Q    with 0Q  , and symmetric matrices NW I W    such that 0
  

 
  

, where  

1 12 12( ) ( ) ( ) ( )T T
N N N NW I A L A I A L A W I C Q I C               ,  

2 12 2 12( ) ( )T T
N NPC I B L B I B L B C P Q          , 

2 12 12
1

( ) ( ) ( ) ( )
2

T T T
N N NW I B L B I A L A C P I C Q               . 

Let U be an orthogonal matrix such that TU LU   , where 1( , , )Ndiag     and , 1, ,i i N  are eigenvalues 

of L. Take ( , )X diag U I U I   . Multiplying on the left and the right of the above inequality by TX  and X , 

respectively, and this completes the proof. 

Theorem 4 Suppose that L is a matrix, and , 1, ,i i N  are eigenvalues of L, different each other. Network (3) is 

absolutely stable for all f satisfying the sector condition in (2) , if 12 , 1, ,iA A i N  are stable and there exist 

diagonal matrices P and Q with 0Q  , and matrice Y , TX X , such that the  following inequality (13) satisfied.  

Where 11 12 12 1 1 22 12 12( ) ( ) , ( ) ( )T T T T T
i i i iA A X X A A Y B B Y PC B B B B C P Q                .  

Then system (3) is absolutely stable. 1K YX  is the controller matrix.  

Proof:  according to theorem 3, if the system (3) is absolute stable with controller ( )ki iu Kx t , then the inequality 

11 12

22

0
  

 
  

 is satisfied, where 11 12 1 12 1( ) ( )T T
i iW A A B K A A B K W C QC          ,  

22 12 12( ) ( )T T
i iPC B B B B C P Q       , and 12 12 12 1

1
( ) ( ) ( )

2

T T T
i iW B B A A B K C P C Q           . 

Let 1{ , , , }diag W I I  . Multiply the inequality 
11 12

22

0
  

 
  

on the left and on the right by Z, 

let 1X W  , 1Y KW  , and using lemma 2, then we can get the inequality (13). 

111 12 1 12

2 3 422

1

1

2

2

3

3

4

4

1
0 0 0.5 0( )

2
0 0 Q( )* 0 0 0

0 0 0 0 0* * 0 0

0 0 0 0 0* * * 0

0 0 0 0 0* * * *

0 0 0 0* * * * *

* 0 0 0* * * * *

* * 0 0* * * * *

* * * 0* * * * *

* * * ** * * * *

T T TT T T
i i

T T

Y B XCB B XC Q XC X A A

P C P C

I

I

I

I

I

I

I

I

  

  
















     
   
 









 



 

  

0






 








    (13) 
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 Remark 2: The dynamic consensus of system (3) is lim ( ) ( ) 0 , , 1,2...,i j
t

x t x t i j N


    , then theorem 4                                          

gives the special results of dynamic consensus for network system (3) with lim ( ) lim ( ) 0 ,i j
t t

x t x t
 

   

, 1,2...,i j N  .   

4  SIMULATION 

In this section, the related examples are provided to validate the effectiveness of the results obtained above.  

Example 1, for the network system (8) , which is composed by three subsystems,  the related matrix of the network 

is given as
0.4 3

1 0.5
A

 
  

  
, 

1 0.5

2.4 1
B

 
  
 

, 1

0 1 1 0
,

1 0 0 1
C B

   
    
   

,
1 0

0 1

 
   

 
, 

1 0

0 1

 
   

 
, 12

0.1 0.1

0.1 0.1
A

 
  
 

, 1

0.1 0.2

0.2 0.1
E

 
  
 

, 2

0.8 0

0.2 0.5
E

 
  

 
, 

0.1 0

0 0.1
H

 
  
 

, 12

0.1 0.1

0.1 0.1
B

 
  
 

 , 

( ) sin( ) , 1,...,3i i if y y i  ,
2 1 1

0 1 1

1 1 2

L

  
 

 
 
   

. We can find that the eigenvalues of L are 0, 2, 3 .  

When 0 (0.1, 0.2, 0.3, 0.1,0.2,0.3)x     , the states diagram of uncertain network (8) without controller are shown 

in fig.1(a),  and the phase diagram of (x1, x2) of subsystem 1 is shown in fig.1(b). We can find that the network 

system (8) without controller contains limit circle. Using theorem 2, the controller K1 =[1830.1  25.0;416.9 984.6] is 

obtained.  The states diagram of network system (8) with the controller K1 shown in fig.1(c), we can find that the 

system is dichotomous. 
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(a)                                                                 (b)                                                                   (c) 

FIG.1:(A) STATE DIAGRAM OF NETWORK SYSTEM, (B) PHASE DIAGRAM OF  SUBSYSTEM 1, (C) STATE DIAGRAM OF NETWORK 

SYSTEM (8) WITH CONTROLLER K1 
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                                                     (a)                                                                                   (b)   

FIG.2: (A)  STATE DIAGRAM OF NETWORK SYSTEM WITH CONTROLLER K1 ,  (B) STATE DIAGRAM OF NETWORK SYSTEM (3) WITH 

CONTROLLER K2 

Example 2, for the network system (3), the nonlinear functions are chosen as ( ) 0.5(1 sin( )) , 1,...,3i i if y y i    , 

then 
0 0

0 0

 
   

 
, 

1 0

0 1

 
   

 
and the other parameter are chosen the same as example 1.  
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When 0 (1, 2, 3, 1,2,3)x     , the states diagram of network system (3) without controller are shown in fig.2(a),  

Using theorem 4, we have K2=[-182.1389  68.7286; -75.1388  20.2610]. The states diagram of network system (3) 

with the controller K2 shown in fig.2(b), we can find that the system is absolute stability. 

5 CONCLUSIONS 

In this paper, we consider the dichotomy and absolute stability of a class of nonlinear complex dynamical networks. 

The complex network system is composed of many subsystems by a certain interconnection relationship. The 

subsystems are a kind of nonlinear system, i.e., Lur’e systems. And the interconnection relationship of complex 

network systems referred in this paper not only concludes the interconnection of states, but also the interconnection 

of the sector nonlinear. Some necessary criterions are derived in this paper. Then, controller design methods of 

dichotomy and absolute stability of complex system are given and the related controller can be constructed via 

feasible solutions of a certain set of blinear matrix. At last, examples are given to illustrate the effectiveness of the 

proposed methods. 
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